New Technologies for Accessible, Durable and Broadly Protective Coronavirus Vaccines

Corey Casper, MD, MPH
CEO, Infectious Disease Research Institute
Agenda

• Current State of Vaccines for COVID
• Gaps in Existing COVID-19 Vaccines
• IDRI Technology to Address COVID-19 Vaccine Gaps
 • Thermostability
 • Durability
 • Breadth of Protection
• Other Solutions for COVID-19
 • GMP Manufacturing
 • Allogenic NK Cell Therapy
Current COVID-19 Vaccine Landscape

Vaccine Types and Characteristics

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Type</th>
<th>Dosing</th>
<th>Storage</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfizer/BioNTec</td>
<td>mRNA + LNP</td>
<td>2 doses, 3 weeks apart</td>
<td>-20C</td>
<td>95%</td>
</tr>
<tr>
<td>Moderna</td>
<td>mRNA + LNP</td>
<td>2 doses, 4 weeks apart</td>
<td>4C for 30d, -20C for 6 months</td>
<td>95%</td>
</tr>
<tr>
<td>Johnson and Johnson</td>
<td>Human Adenovirus</td>
<td>Single Dose</td>
<td>4C for 3 months</td>
<td>61-72%</td>
</tr>
<tr>
<td>Oxford / AstraZeneca</td>
<td>Chimp Adenovirus</td>
<td>2 doses</td>
<td>4C for 6 months</td>
<td>79%</td>
</tr>
<tr>
<td>Sputnik V</td>
<td>Human Adenovirus</td>
<td>2 doses, 3 weeks apart</td>
<td>-20C</td>
<td>92%</td>
</tr>
<tr>
<td>CanSinoBio</td>
<td>Human Adenovirus</td>
<td>Single Dose</td>
<td>4C</td>
<td>65%</td>
</tr>
<tr>
<td>Sinovac</td>
<td>Inactivated Virus</td>
<td>2 doses, 2 weeks apart</td>
<td>4C</td>
<td>50-84%</td>
</tr>
</tbody>
</table>

Current COVID-19 Vaccine Challenges

Access
• Requirement for deep cold storage of mRNA vaccines have put them out of reach for many at US and abroad

Durability
• Immune protection may wane after several months with current vaccine candidates, necessitating regular boosters

Breadth
• Current vaccines’ efficacy may be less against emerging viral variants
IDRI Technology: Thermostable RNA Vaccines and Potent Vaccine Adjuvants
Thermostable RNA Vaccine
New Technologies for Accessible, Durable and Broadly Protective Coronavirus Vaccines

Addressing Gaps in Current RNA Vaccines

<table>
<thead>
<tr>
<th>Limitation</th>
<th>Current RNA Vaccines</th>
<th>IDRI RNA Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage / Distribution</td>
<td>Requirement for deep cold chain.</td>
<td>NLC formulation allows for lyophilization and long-term stability at room temperature.</td>
</tr>
<tr>
<td>Potency</td>
<td>Elicit immunity at levels similar to recovered patients, which may allow re-infection.</td>
<td>Self amplifying RNA allows higher potency; input RNA 100-1000 fold lower than mRNA vaccines gives equal potency.</td>
</tr>
<tr>
<td>Duration of Immunity</td>
<td>Modest immunogenicity may be associated with short durability</td>
<td>Self-adjuvanting RNA vaccine platform may increase duration and breadth of immunity</td>
</tr>
<tr>
<td>Adaptability</td>
<td>RNA sequence encapsulated within delivery vehicle making adaptations to novel tumor antigens challenging</td>
<td>RNA decorated on outside of NLC, allows easy substitution of genetic sequence; can be rapidly modified for new strains</td>
</tr>
</tbody>
</table>
Alphavirus RNA Replicon Used to Deliver SARS-CoV-2 Spike Protein Sequences
A Tale of Two Doughnuts…

Moderna and Pfizer/BioNTec LNP

IDRI’s NLC

3/30/21
Lipid-Based Nanoparticle Delivery

Lipid Nanoparticles (LNPs)
- Encapsulated RNA
- Complex to manufacture and scale
- Each target RNA must be encapsulated with delivery formulation

From Tam et al 2013, PMID 24300520

IDRI Nanostructured Lipid Carriers (NLCs)
- Enhanced stability/bioavailability
- Externally bound RNA
- Protection of RNA from degradation
- Potential for stockpiling
- Scalable manufacturing
- Self-adjuvanting
Advantages of IDRI’s RNA Vaccine Platform

Thermostable at Room Temperature for >8 months

Efficient RNA delivery into cell cytoplasm

![Graph showing SEAP expression and LNP vs. NLC comparison]

- LNP vs. NLC comparison
 - 10 µg IDRI RNA replicon/mouse, delivered i.m.

- Relative Luminescence Units
 - Days post-immunization

- ns

![Image of gel lanes showing RNA stability at different temperatures]
Potent Vaccine Adjuvants
IDRI Adjuvants Enable Broad Coronavirus Protection

SARS-CoV2 RBD Protein + IDRI / 3M adjuvant (3M052-Alum) generated higher nAb titers to mutant COVID strains compared with mRNA vaccine, and also conferred strong protection across coronaviruses.
Conclusions

• Amazing progress has been made in speeding several COVID vaccines through the clinical development pipeline

• However, the majority of the population both at home and abroad lack access to COVID-19 vaccines

• A focus on next-generation vaccine technologies can address current gaps in COVID-19 vaccines while helping prepare for the next inevitable pandemic
The Promise of Innate Immune Enhancement

Infectious Diseases
A new generation of innate immune enhancers has revolutionized vaccinology and the prevention of infectious diseases.

Cancer
Innate immune stimulants are now recognized as effective therapeutic agents against cancer, and important adjuncts to immunotherapy.

Chronic Diseases
Targeting the innate immune system has shown promise in early studies for diabetes, autoimmune disease, and Alzheimer's.
IDRI Takes Products from the Bench to the Clinic

- IDRI is a trusted, and experienced provider of cGMP services:
 - Pioneering the latest methods to manufacture investigational products;
 - Translating our own immune-stimulating formulations into clinical products;
 - Supporting nonprofit/academic organizations and biotech startups;

- IDRI is an internationally approved supplier:
 - Compliant with the highest quality standards
 - Supported by internal QA and QC teams with years of industry experience.

- IDRI’s Clinical and Regulatory teams have enable dozens of rapid and effective early-phase clinical trials for IDRI and partners
Thank you

Corey Casper, MD, MPH
Corey.Casper@IDRI.org
www.idri.org